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DAMPING ANALYSIS  OF WAVES  IN FLXJID-LOADED 

SINGLE AND  CONSTRAINED PLATES 

1. INTRODUCTION 

The technique of constrained-layer damping is based on the addition of two 
layers to a base plate or bar: the first layer consists of a viscoelastic 
material with high loss factor in its shear modulus; the second layer is made 
of a stiff material that increases the shear in the viscoelastic layer, and 
thus promotes viscoelastic dissipation (Fig. 1). 

An early analysis of constrained-layer damping was developed by 
E. M. Kerwin in 1959. [1]  (A review of this technique is found in Ref. 2.)  It 
is limited to thin-plate theory and does not include extensional waves. 
Recently, a model was developed by this author[3] that combines a description 
of the base plate by exact elasticity theory with the Kerwin treatment of the 
dajnping mechanism.  The hybrid model lends itself quite readily to inclusion 
of the effect of fluid loading.  It is often tacitly assumed that the 
radiation and viscoelastic damping in a fluid-loaded constrained plate are the 
same as, respectively, the radiation by a single plate in the fluid and the 
viscoelastic damping of a composite plate in vacuum.  This ignores the 
interaction of fluid and composite plate, with possible consequences for the 
computation of attenuation and damping efficiency. 

The present study develops a model for a hybrid constrained layer that is 
coupled to a fluid loading the plate on either or both faces.  The model is 
formulated and applied to the attenuation of flexural waves in two cases:  on 
one hand, the combination of the results for a fluid-loaded single plate with 
those for a composite plate in vacuum; on the other hand, the results for a 
fluid-loaded composite plate. 

While studying the attenuation of wave propagation in a constrained layer 
under fluid loading, it was found that at low frequency (well below the 
coincidence frequency) the attenuation coefficient again reaches high values. 
There does not appear to be a wide-spread awareness of this phenomenon (which 
is also present for a single plate in a fluid), although it is found in the 
literature.  Therefore, discussion of the fluid-loaded hybrid model is 
preceded by a discussion of the radiation by a single plate into a fluid 
according to thin-plate and exact-elasticity theories. This may also function 
as an introduction to the literature on the study of fluid-loaded thin plates. 

2. FLEIURAL WAVES IN A FLUID-LOADED INFINITE THIN PLATE 

2.1 Theory ' 

The theory of the effect of fluid loading on the propagation of flexural 
waves in an infinite plate in the thin-plate approximation is extensively 
described in the literature.  A general discussion of the problem may be found 
in Refs. 4 and 5.  More detailed studies of the transfer function describing 
the forcing of fluid-loaded plates are given in Refs. 6 through 11. 
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For a discussion of the basic theory, the approach presented in Ref. 5 is 
foilowed here  A straight-crested flexural wave is traveling in the x- 
direction in an infinite plate with thickness h, density p  ,   Young's modulus 

E, Poisson's ratio p,  and bending stiffness D; D - Eh /12(1 ~ V) .    A fluid 

with wave speed c aind density p    is adjacent to the plate at the side of o o 
positive K; z is the coordinate perpendicular to the face of the plate; the 
surface of the plate exposed to the fluid is at z = h/2. The equation for the 
displacement w of the plate in the z  direction is [5] 

DV*w + ph^=  -p(z - h/2), (1) 
5t 

where p is the pressure fluctuation in the fluid. 

It may be noted here that the assumption of one-sided fluid loading is 
incompatible with the exclusion of extensional waves, but the ensuing 
discrepancy is small for the frequency range in which the thin-plate 
approximation is acceptable. 

Continuity of normal displacement at the plate surface for z = h/2 leads 
to the boundary condition 

£f = - 1//.^ If at z = h/2. (2) 
ot 

If the wave in the plate is harmonic, with time and x dependence expressed 
by expi(wt-kx) (where k is the wavenumber), the corresponding compressional 
wave in the fluid is given by 

P+ = Po+ expi[i</t - K^x - K^(z - h/2)], (3) 

where the subscript + refers to the positive side of the plate, in 
anticipation of a later introduction of fluid at the negative side, indicated 

with subscript -.  Here K and K are the components of the wave vector ^ in 
the fluid. "^ ^ 

Matching the normal displacement at the boundary in plate and fluid leads 
to the condition that k = K .  For reflection and transmission problems of 

plane waves k and K are real, and one may set K = k sin^ and K = k cos(9, 
X   o        z   o   ' 

where k^ is the wavenumber in the fluid, with k = w/c , and 6  the angle of 

incidence of the incoming wave. For a (decaying) free wave in a plate k, t., 

and 6  are complex. 

2 
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To obtain a dispersion relation with real coefficients, one introduces a 
itity r 

then gives 

quantity r related to K    by r = iK /k     [5,10].    The boundary condition Eq.   (2) 

2 
p u u = -k Tp    at z = h/2. (4) 

This enables one to replace p in the wave equation [Eq. (1)] resulting in the 
dispersion relation 

k^D - pW  = p//{kj). , (5) 

Since the wave in the fluid satisfies the Helmholtz equation, it follows 
that 

K^ + K^ = k^ - k^ r^ = k^ ; (6) 
X    z o       o ' ^ ^ 

2 
and thus one may substitute for k in Eq. (5).  This results in an equation 
for r in the form i 

r^ + 2r' + (l-n"^)r - eQ~^  = 0 , ; (7) 

where fl is a non-dimensional frequency fl = u/u   .  The angular frequency w is 
c c 

that frequency for which the wave speed c, of flexural waves in an unloaded 

thin plate is equal to the sound speed in the fluid (coincidence).  Since 

c^^ = uh/ip^h)   , (8) 

one has 

The material parameter e is given by l 

^ = ^oV^'-'c^s^) • (10) 

It is a measure for the influence of fluid loading; for e = 0, the wave speed 
c in the plate reduces to c, , the wave speed in vacuum. 

I 
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Alternatively e may be -written as 

e =—(/'//' )(c /c ) , (11) 

and thus e is independent of the plate thickness (as long as the plate may be 
considered "thin"; i.e., kh/2«l) . Here c is the wave speed for extensional 

2 2 waves in a thin plate, c = E/[(l-i' )p ]. 
p s 

2.2 Character of the Roots of the Dispersion Relation 

The dispersion relation [Eq. (7)] has five roots, not all of which have 
physical significance.  Since its coefficients are real and the degree is odd, 
there is at least one real root.  The quantity r appears in the spatial 
dependence of the pressure in the fluid through the factor exp(-k rz) and thus 

only real roots with positive value for r are physically acceptable, 
representing an evanescent wave in the positive z direction.  If there are 
complex roots, they have to appear in pairs of complex conjugates; and the 
choice between the two members of a pair is dictated by the fact that one 
expects wave propagation in the positive z half-space when there is fluid only 
at that side of the plate. As a consequence, the imaginary part of r should 
be positive.  The constraint for the real part of r issues from the following 
observation.  If one considers a wave in the plate in the positive x 
direction, the complex wavenumber k = k' - ia is such that k' and a  are both 
positive to assure a decrease of the wave amplitude in the x direction.  Since 
2    2 2    2 

k - k r = k , the product of the real and imaginary parts of k r is 

equal to -ak'; thus, the real part of r has to be negative.  This in turn 
makes the imaginary part of K positive, and the amplitude of the wave 

increases with distance from the plate.  This may appear physically 
unrealistic but it is not:  Fig. 2 illustrates the explanation.  Waves farther 
away from the plate originate in a location at the surface of the plate where 
the amplitude of the wave had a larger value. 

The real root for r represents a purely evanescent wave even for an 
infinite plate.  The complex root poses a problem in interpretation:  it has 
the appearance of a radiating root, but only for an infinite plate can this 
name be maintained.  For an infinite plate, the distinction between nearfield 
and farfield is lost, and the "radiating" wave is always under the influence 
of the plate.  For a finite plate, a wave with wave speed less than the plane 
wave speed c cannot exist in the farfield and thus is not truly a radiating 

wave.  This was pointed out by Pierucci and Graham [12].  In the remainder of 
this report the term "radiation" will be used in connection with the presence 
of a valid complex root, but it should be realized that its behavior for a 
finite plate needs further scrutiny. 

Setting K = K' + iK" one may conclude that the angle 6  of the z    z    z ° 
"radiated waves" in the fluid with the normal is given by 

tan <5 = k'/K' , (12) 
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and the wave speed c- of this wave in the fluid is 

c^ = k^c^/[(k-)2 .  (K'/]'^'   . (13) 

Of course, these statements are all a consequence of the infinite-plate 
assumption. 

This discussion may be illustrated by the asymptotic behavior of r (= iK ) 
for D-»0.  On physical grounds one would expect that for low frequency the 
inertia of the plate may be ignored by dropping the second term of Eq. (1). 
If, moreover, the compressibility of the fluid is ignored, which is equivalent 

to setting c/c «1, it follows that r + 1 - r , and the polynomial equation 
5     -3 for r reduces to r = efl   [5].  The roots of this equation are 

^=,l/5n-3A,2nri/5^ n = 6, 1, 2, 3, 4. (14) 

It follows from the above discussion that only the real root T^   = £  '   Q~ ' 

and the complex root T    = e '   il    '     (cos 144° + i sin 144°) are acceptable. 

One also infers that the non-dimensional attenuation for the radiating wave, 
given by a/k' , approaches tan 36° = 0.7265 for fl-^O. 

One could also express the dispersion relation in terms of the wavenumber 
O  O        O       n       n 

k in the plate.  Since k T    = -K    =k -k, one can substitute for r in o     z       o 
Eq. (5) and square both sides of the equation to obtain a polynomial equation 

2 in terms ot Tj =  (k/k ) . 

rf'  - ri^  - 2ri^a~^  +  2»?^n"^ + jyfl"* - (e^ + 0^)0"^ =0 (15) 

One finds five roots, of which only two are physically realistic:  one 
real and one complex.  Alternatively, one may solve Eq. (7) for T  and find rj 

according to )/ = 7"^ +1. The proper k/k is obtained from Tj  by realizing that 

k should have a positive real part to represent a wave propagating in the 
postive X direction. Thus from the five roots for rj,  one finds again five 
roots for k/k , two of which have physical meaning. 

2.3 Computational Considerations 

One may use a complex (polynomial) rootfinder for the roots r = iK of 
2 ^ 

Eq. (7) or »7 = (k/k^)  of Eq. (15), and select the physically acceptable ones 

by the criteria developed above.  Alternatively, one may avoid the 
introduction of spurious roots that squaring caused by choosing the proper 

branches in the substitution of r according to r = + (k/k )  - 1, again in 
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accordance with the selection rules developed before,  The resulting equations 
are suitable to derive good first approximations and iterative schemes of 
computation. 

If one defines the symbol i to indicate the positive real root when 

the argument is real and positive, and the root with the positive real part 
when the argument is complex (conform to the sign convention in the Fortran 

square root routine), one obtains from Eq. (5) two equations for (k/k ) :  the 

first for complex k 

i-(k/k^)2 [i - n^k/k^)*] * e/n = 0 , (16) 

and the second for real k 

(k/k^)' 1 - n^k/k^)*] . e/n ^0 (17) 

One necessarily has k>k for real k, since otherwise the first term of 

Eq. (17) would be imaginary and the second term real, which is impossible. 

The real root for k/k^ = c^/c may be computed from Eq. (17) by any real- 

root finder.  Simple iterative schemes are found as follows, starting from 
previous knowledge concerning the general behavior of k/k as a function of 
n = w/w . ° 

a.  For n<l, one finds that c ~ c, or fi (c /c)  ~ 1.  A good approximati 

to Eq. (17) is thus 

on 

icjcf z n-' 1 + ML 1/2 
(18) 

and a useful iterative calculation to improve on this first guess is 

(c /c)^ ,  = Q"^ 
^ o' 'n+l 1 + - E/Q         ] 

• ^%'< - \ 

1/2 
, n = 1, 2, 3 ... , (19) 

wh 
9 

ere one starts with (c /c)  given by Eq. (18). 

6 
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b. For n>l, one finds c - c , and thus a first approximation to Eq. (17) 

3.S 

° (l_f)2)2 

and an iterative scheme is given by 

(20) 

(c /zY   , = 1 + ^ o' ''n+1 
iiZOI 

[i-n'(c„/c); 
n = 1, 2, 3 (21) 

■where the first guess follows from Eq. (20) .        j 

Near 0=1 the convergence of these iterative schemes is very slow, and one 
is advised to use other root-finding schemes; e.g., bisection. 

The complex root of Eq. (16) can be found from similar iterative 
computations.  A good first approximation is given by 

(k/k^)2 = (c^/c)2 : r' 1 - 
le 

,1/2 

\h^ 
(22) 

and by iteration one can improve its accuracy according to 

(c„/c) n+1 = n" 1 - le 

l-(c /cY 

n = 1, 2, 3 (23) 

This scheme converges for all values of il  but is very slow close to the 
locations of the double real roots discussed in the next section.  Between 
these locations of double real roots this latter iterative scheme converges to 
a real root that is physically not realistic. 

2.4 Results for Fluid-Loaded Thin Plate 

The numerical examples in this section refer to a brass plate, with the 
exception of Fig. 9. The physical parajneters for this material are given in 
Table 1.  Figures 3 through 8 are given in non-dimensional form and, 
therefore, they depend only on the loading parameter e. The thickness of the 
plate enters only if one wants to infer the dimensional frequency from the 
value of n.  Also, in this table derived quantities are given that are 
important to the analysis; e.g., the loading parameter e and coincidence 
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frequency u  .    Anticipating the results to be given in a later section for 

fluid-loaded constrained plates, the parameters for viscoelastic and 
onstraining layers used in those examples are also entered into Table 1. c 

Figure 3 shows the (real parts of the) roots of Eq. (23), expressing 

(k/k )* as a function of the dimensionless frequency Q = f/f .  The validity 

of the various roots may be judged by checking whether or not the root 
satisfies Eq. (17) when it is real, and Eq. (1.6) when it is complex  Valid 
roots are designated by solid lines in Fig. 3.  Notice that the categories 
"realistic" and "non-realistic" do not coincide with "real" and "complex." 
Curve 1 represents a non-radiating root, valid for the whole frequency range, 
"subsonic," since c/c = k /k<l. The value of c/c for this root is shown in 

o   o' ' o 
Fig, 4, in comparison with its value for an unloaded plate.  It is interesting 
to notice that the phase speed of the flexural waves in the fluid-loaded case 
does not approach the speed of bending waves in vacuum, rather one has 

c/c, ~ e ' fl '   for n-»0 [5] .  For higher frequencies, c/c approaches 1 

asymptotically. 

The solid part of curve 2 in Fig. 3 represents the real part of (k/k ) 

for a radiating root.  A close-up of curve 2 at lower frequencies is shown in 
Fig, 5.  (Notice the logarithmic scale for the ordinate in Fig. 5.)  One sees 
that there is a gap between the two solid parts of this curve, filled by a 
pair of real roots that are physically not acceptable.  The branch points will 
be discussed below. 

Curve 3 of Fig. 3 shows the real part of a complex root pair that is 
physically not realistic. 

The value of the non-dimensional attenuation a/k' corresponding to the 
solid part of curve 2,  Fig. 3, is shown in Fig. 6.  Between the two vertical 
asymptotes there is no continuation of these complex roots.  The situation 
changes drastically if one introduces even a small loss in the bending 
stiffness of the plate, by setting D+ = D(l + i»/n) •  Equation (16) now becomes 

-ik/kf   [1 - n2(k/k^)*(l + i^)] + e/n = 0 . (24) 

Now there is one valid complex root for all frequencies, the attenuation 
of which is shown in Fig. 7.  This is the only valid root left:  the valid 
real root for the lossless case becomes complex and is no longer physically 
meaningful.  The curve in Fig. 7 shows a dip where the relative attenuation 
approaches the value 0,0025.  This value follows from considering Eq. (5) for 
the case of no fluid loading. Then its right-hand side equals zero, and one 

has (k'-ia)  D(l+iJ7) - p^hu    =  0.  Taking the imaginary part of this equation 

one finds that to first order in the attenuation a, one has a/k' Z  17/4. 

It is of interest to study the rule for the location of the two points 
where the complex roots in Fig. 5 change into a pair of real roots.  (Remember 
that the real part of the root depicted in the figure corresponds to a pair of 
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complex conjugate roots.)  Obviously at these locations there is a double real 
root, found by setting the derivative of the left-hand side of Eq. (7) with 
respect to r equal to 0 [10]. Thus the condition is that 

5r^ + 6r^ + 1 - Q"^ = 0 , (25) 

9 —21/2 
with solutions T  =  -3/5 + (4/25 + 1/5 fl ) ' . Both double roots occur for 
fl<l, and thus only the positive root of the solution to Eq. (25) can be used. 
The given values for r can be substituted into Eq. (7), and the equation may 
be numerically solved to give two values for fl and corresponding values for 
c/c as a function of e. Figures 8a and 8b show the relevant curves, with a 

few discrete points belonging to familiar materials. Notice that any material 
with a fluid-loading parameter e greater than the right-hand limit in Fig. 8 
will have a continuous complex root for all frequencies, even without damping 
in the plate. An example is aluminum with e = 0.39 (see Fig. 9). For a thin 
plate loaded on both sides by the same fluid, the right-hand side of Eq. (2) 
will be -2p instead of -p.  This doubling of the pressure loading has as a 
consequence that the applicable e in this case is twice that of Eq. (11), and 
thus several of the materials indicated in Fig. 8 would show this continuous 
complex root for two-sided fluid loading. 

3. FLEIURAL WAVES IN A FLUID-LOADED INFINITE PLATE, EXACT ELASTICITY THEORY 

The basic approach to the description according to exact elasticity theory 
of the propagation of straight-crested waves in a fluid-loaded single plate, 
and of reflection and transmission by such a plate, is given elsewhere [13]. 
The main points are repeated here. 

The dependence of the field variables on the direction of propagation x 
and time t for a harmonic wave is given by a factor exp[i(wt-kx)], which is 
subsequently suppressed. The wave propagation in the plate is described by a 
potential for irrotational wave motion 

^ = A cosh qz + B sinh qz , 
S 21 

(26) 

and a potential for incompressible waves 

f = C    cosh sz + D sinh sz , (27) a s 

where q = k -k, and s = k - k . 
d s 

Here, k^ is the wavenumber for dilatational waves with propagation speed 

Cj, and k is the wavenumber for shear waves with speed c in the plate 

material. The subscripts a and s in the amplitudes for the potentials (A , 

^a' ^a' ^^^ ^s^  refer to antisymmetric and symmetric Lamb waves, which are the 

generalizations at higher frequencies for flexural and extensional waves, 
respectively. 

9 
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One applies the boundary conditionsr  continuity of normal stress and 
normal particle velocity and zero shear stress at the faces of the plate.  In 
the case where the same fluid is present at both laces of the plate, one has 
in addition to the pressure variation at the side of the plate with positive z 
[given by Eq. (3)], another pressure variation for negative z, given by 

p_ = p^_expi[wt - K^x + K^(z+h/2)]. (28) 

The resulting matrix of the coefficients in the linear equations expressing 
boundary conditions is shown in Table 2.    The origin of the coordinate system 
is at the center of the plate, and the faces are at z = + h/2. 

The various dispersion relations are obtained by equating the determinant 
value of the appropriate matrix to ^ero. For fluid on both sides of the 
plate, this is the full 6X6 matrix of Table 2; for fluid on the positive side, 
it is the matrix obtained by omitting row 8 and column 6 (for fluid on the 
negative side one omits row 5 and column 5; but, of course, the result is the 
same),  For a plate in vacuum, rows 5 and 6 and columns 5 and 6 are 
suppressed. 

To appreciate the effects of using exact elasticity theory, the phase 
speeds of flexural waves and extensional waves are shown in Fig. 10 and are 
compared with the results of thin-plate theory.  The results are given for a 
10-cm thick brass plate; the parameters are listed in Table 1. 

One sees that the value of the frequency for which the flexural wave speed 
is equal to the sound speed in the medium, water, is shifted from 3218 Hz for 
thin-plate theory to 5199 Hz for exact elasticity theory. 

The phase speed for a plate loaded on one side is shown in Fig. 11. 
Notice that in exact elasticity theory there are only two roots in the 

k - k .  In thin- o 
dispersion equation, depending on the sign of K = jv 

plate theory there are five roots of the polynomial Eq. (7). The appearance 
of this figure shows features similar to those encountered in the case of 
thin-plate theory, see Figs. 4 and 5. There is again a non-radiating root at 
all frequencies with asymptotic value c for f-K»: the radiative root consists o 
of two branches, interrupted by a frequency range where there are two real 
roots that are not physically meaningful. The points where this transition 
takes place are at frequencies 875 and 3635 Hz.  The corresponding curve for 
a/k' is shown in Fig. 12. 

4. HYBRID MODEL OF FLUID-LOADED CONSTRAINED PLATE 

4.1 Theory 

A model has been developed [3] for constrained layer damping, whereby the 
base plate is described by exact elasticity theory, while the constraining and 
damping layers are treated according to the Kerwin model [1]. 

10 
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This hybrid model may be easily extended to include fluid loading by 
combining the modified boundary condition due to the two extra layers with the 
fluid loading implicit in the matrix of Table 2. 

As derived in Ref. 13, the shear stress r  at the side of the plate ' zx '^ 
adjacent to the elastomer layer is not zero, as for an unconstrained plate, 
but is given by 

1 - {z/of  G u       I 
r  =-  '—^  ,     i (29) 
^*   1 - (c/c3)^g h^       ' 

■where c is the thin-plate extensional wave speed of the constraining layer. 

The elastomer layer has a complex shear modulus G and thickness h .  The 

tangential displacement of the surface of the plate is u.  The shear parameter 
g is given by 

g = G^(l-^^/(k^ E3h^h3) , (30) 

where E is Young's modulus, V    Poisson's ratio, and h the thickness of the 
constraining layer. 

The displacement u in Eq. (29) may be expressed in terms of the amplitudes 
A , B , C , D of Eqs. (26) and (27).  The result of inserting these into the 
5    cL    cL    S 

expression for the shear stress Eq. (29) is a modification of the first four 
elements of the second row of the matrix in Table 2, assuming that the 
constraining layer is at the positive z side of the plate.  The modified 
matrix elements m . are (using the half thickness d = h /2 of the base plate) 

2 
m  = 2ikqd cosh(qd ) + iFkd sinh(qd ) , 

(31) 

2  2  2 
m  = (k +s )d cosh(sd ) + Fsd sinh(sd ), 

j 

2 
m  = 2ikqd sinh(qd ) + iFkd cosh(qd, ), 

£• 0 1 1 X 1 

2  2  2 
m  = (k +s )d sinh(sd ) + Fsd^ cosh(sd ) , 

where F = 0.5 (G^/G^) (h^/h^) [1 - {c/c^f]/[l -  (c/c^^ + g] .  G^ is the shear 

modulus of the base plate material. 

The dispersion relation for the case where constraining layer and fluid 
are on the same side is obtained by suppressing row 6 and column 6 in the 

It 
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matrix. If constraining layer and fluid loading are on opposite sides, column 
5 and row 5 are suppressed.  If both sides are loaded by fluid, the full 6X6 
matrix is used. 

4.2 Evaluation of Damping Efficiency in Fluid-Loaded Constrained Plate. 

The purpose of constrained-layer damping is to absorb acoustic energy 
present in a vibrating plate or bar by means of a -/iscoelastic layer. 
Therefore, one tries to maximize the energy absorbed by studying the 
attenuation coefficient for viscous damping a as a function of the parameters 

of the experimental condition. When a constrained layer is loaded by fluid, 
radiation will take place at certain frequency ranges and it is obviously 
important to assess what fraction of the total attenuation is due to loss by 
radiation.  Apart from the attenuation by viscous damping, one should 
therefore also consider the damping efficiency, defined as the fraction of the 
total absorbed energy that is lost to viscoelastic dissipation. 

Let W be the power propagated in the straight-crested wave per unit of 
width of the plate.  Then this damping efficiency may be computed in the case 
of the hybrid model by evaluating the rate of energy loss by radiation, 
(dW/dx)^, and the rate of energy loss due to viscoelastic absorption, 

(dW/dx)^, per unit of distance along the plate. 

The energy loss by radiation follows from evaluating the intensity vector 

I, expressed in terms of the amplitudes of particle velocity vector v and 

pressure p by I = -Re(p v), where Re indicates the real part of a complex 

quantity, and p is the complex conjugate of p.  The pressure at the positive 

side of the plate p is given by 

P+ = Po+expi[wt - kx - K^(z-h/2)], 

where k = k' - ia,  and K = K' + i K". The velocity vector v is 

(32) 

-» -. Mp 
" Vo 

k'-io K'+iK" z      z 
'    k o     . 

+ k o 
(33) 

The intensity vector is then given by 

2p c 
k' K' 

z 
k '  k 

L o oj 
(34) 

aaid its absolute value is given by 

12 
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I = P+ 

/•    1 
2    r 1 2 

r + K' 
L zJ 

1/2 

2/3   c '^o o 
S/- c-   ' o"f 

(35) 

where c, is the phase speed of the radiated wave introduced before.  The 

expression Eq. (35) has the well-known form for plane waves of the free wave 
speed c is replaced by the speed c- for waves influenced by the presence of 

the plate. The energy-loss rate per unit of distance due to radiation is thus 

(suppressing a factor e   ) 

dW 

dx 
T    c   1 IPI     c   ^ = 1 coso = -^ —  coso = T: 

1 |Po+l 
2/' c o"f 2 fl c 

'^o o 

K' z 
k 

L o J 
(36) 

The computation for the other side gives a similar result, 

dW_ 

dx 
1 Po- 

r"2 ^o% 
cose (37) 

The rate of energy loss per unit of distance in the x direction in the 
viscoelastic layer, according to Kerwin's model, is given by 

dW 
dx 2 h„  '^'  ' 

v     2 
(38) 

where ^ is the amplitude of the shear displacement in the elastomer layer, 
equal to the difference in the displacement of the top and bottom of the 
layer. This may be written as 

lei' = le/ui' iu/dj2 , (39) 

where 

e/u = - 
(0/03)^ 

1   -   (C/Cg)      +  g     . 
(40) 

The field quantities p  , p  , and (^/u) can be obtained from the matrix in 

Table 1.  One can then find the dajnping efficiency e^.  from 

13 
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IdW/dxI 

^D " TdW/dxl +TdW7d^ ° ^^^^ 

4.3 Comparison of Damping Efficiency in Various Models 

The concept of damping efficiency was defined in section 4.2 as the 
fraction of the total energy loss that is due to damping by the viscoelastic 
layer. It is quite common to evaluate this efficiency by computing it from 
the separate cases of a single fluid-loaded plate and a constrained plate in 
vacuum. This implies the tacit assumption that the radiation by a fluid- 
loaded constrained plate is the same as the radiation by a simple fluid-loaded 
plate, and that the viscoelastic damping in a fluid-loaded constrained plate 
is the same as that in a constrained plate in vacuum,  It ignores a possible 
interaction between the fluid-loading and constraining layers in the composite 
situation. 

In this section, the validity of this assumption is investigated by 
comparing the damping efficiency for a fluid-loaded constrained plate with a 
linear combination of the separate cases of a single plate loaded by fluid and 
a constrained plate in vacuum.  The damping efficiency for the first case is 
computed according to the expression Eq. (41).  For the linear combination the 
attenuation constant for the single fluid-loaded plate a    is combined with the 
attenuation constant a    for the constrained layer in vacuum to give the total 
attenuation a-, by 

^X " \ -^ ^r ' (^2) 

and damping efficiency e^. by 

a 

'D ~ a +a ^n = -^ ■ (43) 

In the following numerical examples the base plate is 10-cm-thick brass.  The 
elastomer layer is 1.24-mm thick, its shear modulus is chosen to be constant 
for the whole frequency range.  Of course, this is physically unrealistic 
since the property of viscoelasticity is by nature dependent on frequency. 
The constancy of G, though, brings out the geometry and frequency dependence 
of the dsunping, separated from viscoelastic behavior as a function of 
frequency.  A value of G^ = 10(l+i) MPa was chosen.  The constraining layer is 

2.48-mm thick. Table 1 shows the parameters of the constrained plate and of 
the acoustic medium. 

Figure 13 shows the comparison for a constrained plate loaded by a fluid 
at the side of the constraining layer with the separate cases of a single 
plate with a fluid layer and a constrained layer in vacuum. One sees clearly 
the two ranges of high damping due to radiation and, in between these, the 
hump due to viscoelastic damping.  It appears, at least at the scale of the 
graph, that the total attenuation is practically due to one or the other 
effect with only some visible discrepancy at the higher end of the 
viscoelastic hump. 

14 
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The comparison of the damping efficiency computed for the two cases (the 
first being the linear combination of a single plate in the fluid with a 
constrained plate in vacuum, the second being a fluid-loaded constrained 
plate) is shown in Fig. 14. Again, for a rather large frequency range the 
differences are small.  At the lower frequency end there is a discrepancy that 
apparently corresponds to the fact that the absorption in the viscoelastic 
layer is influenced by the presence of the fluid. At the high-frequency side 
one sees that the efficiency computed from the linear combination turns up 
sharply at about 40 kHz. This is due to an effect already discovered [13]. 
For high frequencies the loading of one face of the plate by a fluid forces 
the action (i.e., the displacement of the plate particles) to the unloaded 
side so that the radiation drastically diminishes. This suggests that in this 
frequency range it is better to damp a wave by applying the constraining 
layers at the side of the plate opposite to the loading fluid. The effect of 
this can be seen in the total attenuation (Fig. 15) where attenuation due to 
radiation falls off for both cases (fluid on the same side or opposite side to 
the constraining layers) while the viscoelastic damping remains intact for the 
latter case. The effect on damping efficiency is clearly visible in Fig. 16. 

When the attenuation for one-sided loading is compared with the case of 
fluid-loading on both sides (Fig. 17), one sees that indeed the radiation 
stays high for the symmetric situation.  Accordingly, the damping efficiency 
(Fig. 18) shows a steady decrease with f and is well approximated by a linear 
combination of separate radiation and viscoelastic damping (dashed curve). 
Notice that in Figs. 16 through 18 only the high-frequency part of the curves 
is shown. The scale of the abscissa is kept the same to facilitate comparison 
with Figs. 12 through 14. 

■ 

5. CONCLUSIONS 

This study shows that for a sizable frequency-range, it is a good 
approximation to obtain the damping and radiation in a fluid-loaded composite 
plate by a linear combination of the attenuation in a single plate in a fluid 
and a composite plate in vacuum. 

At both the high- and low-frequency ends of this range, though, 
discrepancies occur between the linear combination of the two cases of a 
single plate in a fluid and a constrained plate in vacuum and the computation 
based on a fluid-loaded constrained plate by the hybrid model.  This 
necessitates, in general, the study of the complete fluid-loaded composite 
situation, in order to predict the total attenuation, and especially the 
damping efficiency. 
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Table 1. Material Parameters and Derived Quantities 

Base plate, brass 

thickness 

Young's modulus 

Foisson's ratio 

density 

E, = 

I'-,  = 

10 cm 

104 GPa 

0.37 

p    =  8500 kg/m^ 

shear modulus Gj^ = 38.0 GPa 

extensional wave speed  c = 3765 m/s 
(thin-plate)       P 

c = 2113 m/s 
D^= 10.0 MN m 

shear wave speed 
bending stiffness 
fluid-loading parameter e = 0.086 
coincidence frequency   f = 3212 Hz 

(thin-plate)       ^ 

2. Viscoelastic layer (hypothetical) 

thickness 

shear modulus 

loss tangent in    /? = 1.0 

she SO" modulus 

hn = 1.24 mm 

Gg = 10 MPa 

Constraining layer, aluminum 

thickness 

Young's modulus 

hg = 2.48 mm 

Poisson's ratio 

density 

4. Fluid, fresh water 

density 

wave speed 

Eg = 71 GPa 

1/3 = 0.33 

/>3 = 2700 kg/ m 

p^ = 998 kg/m^ 

c    = 1481 m/s o ' 
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CONSTRAINING 
•LAYER 

VISCOELASTIC 
LAYER 

BASE PLATE 

Z 

Fig.   1  - GeomBtr7 o£  constrained lajrer. 

WAVE IN  FLUID 

Fig. 2 - Relation betiwen ware-amplitude rariation in the plate and in the fluid. 
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10.0 

!0.0 

Fig. 8 - Real p»Pt o£ the root. TJ  = (k/k^)  of Bq. 22 for flexural warea in fluid-loaded 

plate.  The solid (parts of) curres are physically realistic. 
Curre 1  Seal subBonic root 

Curre 2 radiating root 

Curre 8 

two real roots 
zh  point is lo 
complex root 

The  brjuich point  is   located at f/f     = 0.725,    (k/k )     =  1.136 

10.0 

10.0 

Pig. 4 - Eelatire ware speed of non-dissipatire subsonic flexural ware in thin plate as a 
function of relatiTe frequency.    Loaded by fluid on one side.     in Tacuum. 
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Acceptable complex root.    Non-realistic Fig. 6 - Fluid-loaded thin plate.    

real poots.  Biten.ion of curre 3, Fig. S for low frequency.  The branch points are located 
2 0 

»t f/f  = 0.72S} (k/k )  = 1.136 and f/f  = 0.0276; (k/k )  = 16.59. 

1-   10-2 

10" 

10" J 1—I I I     Ir     I   I   I I I II 

r 

10" Iff r2 
J 1 I   I  I I 1 I 

10" 

f/'c 
10" 

Fig.   6  - Flxiid-loaded thin plate.     Non-dimensional  attenuation O/k' 
for radiating root of Fig.   6 
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,Opr 

^   10-2 

Fig.   7 - Fluid-loaded thin plate.     Non-dimensional attenuation,     fl/k'   for plate witli 
lose   tangent  1] = 0.^1  in bending  stiffness  D. 

1.00 

0.75 - 

!-.   0,50 - 

0.25 - 

1.00 

0.75 

o    0.50 - 

0.25 - 

Fig. 8 - Thin plate loaded on one side by water. Values of double real roots, as a function 
of fluid-loading parameter £. 

Discrete points«  1 - lead    4 - nickel      a) fl = U/U 
2 - silrer  6 - steel *^ 
3 - brass b) c/c 
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10 " p: 

10- 

< 10-2 

10-^ ; 

10-' 
0.01 

J 1—I I I I I I I I I I I r I I I I I   I  I I I I I I 
o:i 1.0 

'/fc 

Pig. 0 - Thin aluminum plate loaded on one aide by water.  Non-dimensional attenuati 
fl/k  as a function of relatire frequency f/f . 

FREQUENCY (kHz) 

Fig. 10 - Phase speed of wares in infinite brass plate of 10 cm thickness in Tacuum. 
Antisymmetric (flezural) ware 

1. Exact theory 
2. Thin-plate theory 

Symmetric (eztensional) ware ' 

8.  Exact theory 

4.  Thin-plate theory 
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2,00 

1.50 

§     1.00 

0.50 

—J Li  LULU 1 1    I  I I I III I     I    f  I I I III 
001 0.10 1.00 10.0 

i—LUJ 
100 

rRECX-iENCY (kHi) 

Fig, H - Phase speed of 10-cm thick brus plate, loaded by water on one side.  The solid 
curres represent physically acceptable roots. 

1. (solid parts) radiatiye root 
2. Non-dissipatire root 

100 
FREQUENCY (i^Hz) 

Fig. 12 - Non-dimensional attenuation fl/k' of radiating wares in IB-cm thick brass plate 
loaded on one side by water. 
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<10-2 

0.01 0.10 1.00 

FREC3UENCY (kHz) 

10.0 100 

Total dimensionlesB Fig. 18 - Comparlaon of »tteiiu»tion coofficiont«.    

attenuation fl/k' of constrained plate, loaded hj  water on the side of the damping 
layers.    Attenuation of single plate loaded hj  water on one side. 
-'-*-'-* Damping of constrained plate in racuum. 

FREQUENCY (kHz) 

'^^K' 14 — Comparison of damping efficiency 
on side of damping layers.    

Constrained brass plate loaded by water 
  Computed by linear combination of radiation damping 

of single plate loaded on one side, and viscoelastic damping of constrained plate in Tacuum. 
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10- 

'00 10.0 
FREQUENCY (kHj) 

00.0 

Fig. 16  CompariBoa of total attenuation.  Conatrained brass plate loaded by water 
on side of damping layers.    Constrained brass plate loaded by water on opposite 
side from damping layers. 

^     10~^ = 

100.0 

FREQUENCY (KHZ) 

Fig. 16 - Comparison of damping efficiency.  Constrained layer loaded"by water 
Bide of damping layer, 
from damping layers. 

Constrained layer loaded by water on opposite side 
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0.01 0.10 1.00 

FREQUENCY (kHz) 
10.0 100 

Fig. 17 - Compariaon of total attenuation.    Constrained brass plate loaded by water 
on side of damping layers.    Constrained brass plate loaded by water on both sides. 

100 

FREQUENCY (kHz) 

Fig. 18 - Comparison of damping efficiency.    Constrained layer loaded'by water on 

both sides.     Computed by linear combination of attenuation of radiation damping fo' 

single plate, loaded on both sides, and riscoelastic damping of constrained plate in racuum. 
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